

linode-api

Note

These docs are currently in development, and are therefore incomplete.
For full documentation of the API, see the Official API Documentation [https://developers.linode.com].

This is the documentation for the official Python bindings of the Linode
API V4. For API documentation, see developers.linode.com [https://developers.linode.com].

This library can be used to interact with all features of the Linode API, and
is compatible with Python 2 and 3.

Installation

To install through pypi:

pip install linode-api

To install from source:

git clone https://github.com/linode/python-linode-api
cd python-linode-api
python setup.py install

For more information, see our Getting Started
guide.

Table of Contents

Contents:

	Getting Started
	Installation

	Authentication

	Listing your Linodes

	Creating a Linode

	Core Concepts
	Pagination

	Filtering

	Models

	OAuth Integration
	Overview

	OAuth Scopes

	Performing an OAuth Login

	Logging Out

	Linode Client
	Grouping

	LinodeClient class

	Groups

	Linode Login Client
	LinodeLoginClient class

	OAuth Scopes

	Pagination
	PaginatedList class

	Filtering Collections

Getting Started

Installation

The linode-api package can be installed from pypi as shown below:

pip install linode-api

If you prefer, you can clone the package from github [https://github.com/Linode/python-linode-api] and install it from source:

git clone git@github.com:Linode/python-linode-api
cd python-linode-api
python setup.py install

Note

This library uses the “linode” namespace. This could conflict with other
libraries intended to interact with older versions of the Linode API. If
you depend on a python library to interact with older versions of the Linode
API, consider using a virtualenv when installing this library.

Authentication

In order to make requests to the Linode API, you will need a token. To generate
one, log in to cloud.linode.com [https://cloud.linode.com], and on your profile [https://cloud.linode.com/profile/tokens] click “Create a Personal
Access Token”.

Note

You can also use an OAuth Token to authenticate to the API - see OAuth
for details.

When creating a Personal Access Token, you will be prompted for what scopes the
token should be created with. These scopes control what parts of your account
this token may be used to access - for more information, see OAuth Scopes.
Restricting what a token can access is more secure than creating one with access
to your entire account, but can be less convenient since you would need to create
a new token to access other parts of the account. For the examples on this page,
your Personal Access Token must be able to view and create Linodes.

Listing your Linodes

Using the token you generated above, create a LinodeClient object
that will be used for all interactions with the API.:

from linode import LinodeClient
client = LinodeClient(token)

This object will manage all requests you make through the API. Once it’s
set up, you can use it to retrieve and print a list of your Linodes:

my_linodes = client.linode.get_instances()

for current_linode in my_linodes:
 print(current_linode.label)

When retrieving collections of objects from the API, a list-like object is
returned, and may be iterated over or indexed as a normal list.

Creating a Linode

In order to create a Linode, we need a few pieces of information:

	what :py:class:Region to create the Linode in

	what :py:class:Type of Linode to create

	what :py:class:Image to deploy to the new Linode.

We can query for these values similarly to how we listed our Linodes above:

available_regions = client.get_regions()

We could also use values that we know in advance to avoid the need to query the
API. For example, we may know that we want a g5-standard-4 Linode running the
linode/debian9 Image. Both objects and IDs are accepted when creating a Linode.:

chosen_region = available_regions[0]

new_linode, password = client.linode.create_instance(chosen_region,
 'g5-standard-4',
 image='linode/debian9')

create_instance() returns the newly-created Linode object and the
root password that was generated for it. This Linode will boot automatically,
and should be available shortly. Finally, let’s print out the results so we
can access our new server.

print("ssh root@{} - {}".format(new_linode.ipv4[0], password))

Continue on to Core Concepts

Core Concepts

The linode-api package, and the API V4, have a few ideas that will help you more
quickly become proficient with their usage. This page assumes you’ve read the
Getting Started guide, and know the basics of
authentication already.

Pagination

The Linode API V4 loosely follows a RESTful design, and paginates results to
responses for GETs to collections. This library handles pagination
transparently, and does not load pages of data until they are required. This
is handled by the PaginatedList class, which
behaves similarly to a python list. For example:

linodes = client.linode.get_instances() # returns a PaginatedList of linodes

first_linode = linodes[0] # the first page is loaded automatically, this does
 # not emit an API call

you can also use the `first()` convenience function for this
first_linode = linodes.first()

last_linode = linodes[-1] # loads only the last page, if it hasn't been loaded yet
 # this _will_ emit an API call if there were two or
 # more pages of results. If there was only one page,
 # this does not emit an additional call

for current_linode in linodes: # iterate over all results, loading pages as necessary
 print(current_linode.label)

If you’re not concerned about performance, using a
PaginatedList as a normal list should be fine. If
your application is sensitive to performance concerns, be aware that iterating
over a PaginatedList can cause the thread to wait as a synchronous
request for additional data is made mid-iteration.

Filtering

Collections of objects in the API can be filtered to make their results more
useful. For example, instead of having to do this filtering yourself on the
full list, you can ask the API for all Linodes you own belonging to a certain
group. This library implements filtering with a SQLAlchemy-like syntax, where
a model’s attributes may be used in comparisons to generate filters. For
example:

prod_linodes = client.linode.get_instances(Linode.group == "production")

Filters may be combined using boolean operators similar to SQLAlchemy:

and_ and or_ can be imported from the linode package to combine filters
from linode import or_
prod_or_staging = client.linode.get_instances(or_(Linode.group == "production"
 Linode.group == "staging"))

and_ isn't strictly necessary, as it's the default when passing multiple
filters to a collection
prod_and_green = client.linode.get_instances(Linode.group == "production",
 Linode.label.contains("green"))

Filters are generally only applicable for the type of model you are querying,
but can be combined to your heart’s content. For numeric fields, the standard
numeric comparisons are accepted, and work as you’d expect. See
Filtering Collections for full details.

Models

This library represents objects the API returns as “models.” Most methods of
LinodeClient return models or lists of models, and all models behave
in a similar manner.

Creating Models

In addition to looking up models from collections, you can simply import the
model class and create it by ID.:

from linode import Linode
my_linode = Linode(client, 123)

All models take a LinodeClient as their first parameter, and their ID as the
second. For derived models (models that belong to another model), the parent
model’s ID is taken as a third argument to the constructor (i.e. to construct
a Disk you pass a LinodeClient, the disk’s ID, then the parent
Linode’s ID).

Be aware that when creating a model this way, it is _not_ loaded from the API
immediately. Models in this library are lazy-loaded, and will not be looked
up until one of their attributes that is currently unknown is accessed.

Lazy Loading

If a model is created, but not yet retrieved from the API, its attributes will be
unpopulated. As soon as an unpopulated attribute is accessed, an API call is
emitted to retrieve that value (and the rest of the attributes in the model) from
the API. For example:

my_linode.id # no API call emitted - this was set on creation
my_linode.label # API call emitted - entire object is loaded from response
my_linode.group # no API call emitted - this was loaded above

Note

When loading a model in this fashion, if the model does not exist in the API
or you do not have access to it, an ApiError is raised. If you want to load
a model in a more predictable manner, see LinodeClient.load

Volatile Attributes

Some attributes of models are marked volatile. A volatile attribute will
become stale after a short time, and if accessed when its value is stale, will
refresh itself (and the entire object) from the API to ensure the value is
current.:

my_linode.boot()
my_linode.status # booting
time.sleep(20) # wait for my_linode.status to become stale
my_linode.status # running

Note

While it is often safe to loop on a volatile attribute, be aware that there is
no guarantee that their value will ever change - be sure that any such loops
have another exit condition to prevent your application from hanging if something
you didn’t expect happens.

Updating and Deleting Models

Most models have some number of mutable attributes. Updating a model is as simple
as assigning a new value to these attributes and then saving the model. Many
models can also be deleted in a similar fashion.:

my_linode.label = "new-label"
my_linode.group = "new-group"
my_linode.save() # emits an API call to update label and group

my_linode.delete() # emits an API call to delete my_linode

Note

Saving a model may fail if the values you are attempting to save are invalid.
If the values you are attemting to save are coming from an untrusted source,
be sure to handle a potential ApiError raised by the API returning
an unsuccessful response code.

Relationships

Many models are related to other models (for example a Linode has disks, configs,
volumes, backups, a region, etc). Related attributes are accessed like
any other attribute on the model, and will emit an API call to retrieve the
related models if necessary.:

len(my_linode.disks) # emits an API call to retrieve related disks
my_linode.disks[0] # no API call emitted - this is already loaded

my_linode.region.id # no API call emitted - IDs are already populated
my_linode.region.country # API call emitted - retrieves region object

OAuth Integration

Overview

OAuth 2 is an open authentication protocol that describes how users can safely
grant third-party applications access to some or all of their accounts with
service providers. Linode implements OAuth 2 with https://login.linode.com,
allowing third-party developers worlds of possibilities when integrating with
Linode’s service. By making an OAuth application, you can allow users to
grant your app access to create, install, configure, and manage infrastructure
on their behalf.

Note

If you are simply trying out the API, or if you’re writing a command line
tool that accepts a Personal Access Token, you can safely skip this guide.

The OAuth 2 workflow has three actors:

	end user

	The acting user who will log in to the application.

	authentication server

	The server that authorizes logins and issues tokens. In this case, it will
be login.linode.com

	client application

	The application you are writing, that Linode users will login to through
Linode’s OAuth server. You must register OAuth clients at
https://cloud.linode.com or through
create_oauth_client
to generate a client ID and client secret (used in the exchange detailed
below).

The OAuth 2 exchange works as follows:

	The end user visits the client application’s website and attempts to login
using OAuth.

	The client application redirects the end user to the authentication server
with the client application’s client ID and requested OAuth scopes in the
query string.

	The end user inputs their credentials to the authorization server and
authorizes the login.

	The authorization server redirects the end user to the client application
with a temporary exchange code in the query string.

	The client application issues a request to the authentication server
containing the exchange code and the client application’s client secret.

	The authentication server responds to the client application with a newly
issued OAuth token.

A working example of completing an OAuth exchange using this library is
available in the example project Install on Linode [https://github.com/linode/python-linode-api/tree/master/examples/install-on-linode]

OAuth Scopes

OAuth scopes define the level of access your client application has to the
accounts of users who authorize against it. While it may be easier to always
request the broadest scopes, this is discouraged as it is more dangerous for
the end user. The end user is presented with the requested scopes during the
authorization process and may choose to abort authorization of your application
based on the scopes requested.

OAuth scopes are represented by the
OAuthScopes class, which can be used to
construct lists of scopes to request. OAuth scopes are divided into
“superscopes,” broad categories of entities/actions that may be requested
access to, and “subscopes,” the level of access requested to a particular
entity class. For example, if you are writing a frontend to manage
NodeBalancers, you may need access to create and modify NodeBalancers, and also
to list Linodes (to display more information about the individual backends).
In this hypothetical case, you would likely want to construct your requested
scopes like this:

requested_scopes = [OAuthScopes.NodeBalancer.all, OAuthScopes.Linodes.view]

Performing an OAuth Login

The LinodeLoginClient class manages all
aspects of the OAuth exchange in this library. To create a
LinodeLoginClient, you must use your client ID
and client secret (generated upon registering a client application with Linode -
see above).:

login_client = LinodeLoginClient(my_client_id, my_client_secret)

When a user attempts to login to your application using OAuth, you must issue a
redirect to our authentication server (step 2 above). The
LinodeLoginClient handles most of the details
of this for you, returning the complete URL to redirect the end user to:

def begin_oauth_login():
 """
 An example function called when a user attempts to login user OAuth.
 """
 # generate a URL to redirect the user to, requested full access to their
 # account
 redirect_to = login_client.generate_login_url(scopes=OAuthScopes.all)

 # use your web framework to redirect the user to the generated URL
 return redirect(redirect_to)

Once the user has authenticated and approved this login, they will be redirected
to the URL configured when your client application was registered. Your web
application must accept this request, and should use it to complete the OAuth
exchange (step 5 above):

def oauth_redirect(code=None):
 """
 An example callback function when a user authorizes this application.

 :param code: The exchange code provided by the authentication server,
 present in the query string of the request.
 :type code: str
 """
 token, scopes = login_client.finish_oauth(code)

 # token is a valid OAuth token that may be used to construct a
 # LinodeClient and access the API on behalf of this user.

Now that you have been issued a token, be sure to keep it secret and specific
to this user - it should be tied to their session if possible.

Logging Out

When a user logs out of their account, you must call
LoginClient.expire_token with the
token issued to your application. This will invalidate the OAuth token the
user generated by logging in, which will completely revoke their session.
Simply invalidating their session in your application and leaving their OAuth
token active is not a complete logout, and should be avoided.

Linode Client

The LinodeClient is responsible for managing your connection to the API using
your token. A LinodeClient is required for all connections to the API, and a
reference to one is required by every model. A LinodeClient is created with a
token, either an OAuth Token from the OAuth Exchange (see
oauth for more information) or a Personal Access Token.
See our getting_started guide for more
information:

from linode import LinodeClient

token = "api-token" # your token goes here

client = LinodeClient(token)

Grouping

The LinodeClient class is divided into groups following the API’s overall
design - some methods and functions are accessible only through members of the
LinodeClient class:

access an ungrouped member
client.get_regions() # /regions

access a grouped member - note the URL matches the grouping
client.linode.get_instances() # /linode/instances

The LinodeClient itself holds top-level collections of the API, while anything
that exists under a group in the API belongs to a member of the client.

LinodeClient class

	
class linode.LinodeClient(token, base_url='https://api.linode.com/v4', user_agent=None)

	
	
__init__(token, base_url='https://api.linode.com/v4', user_agent=None)

	The main interface to the Linode API.

	Parameters

	
	token (str) – The authentication token to use for communication with the
API. Can be either a Personal Access Token or an OAuth Token.

	base_url (str) – The base URL for API requests. Generally, you shouldn’t
change this.

	user_agent (str) – What to append to the User Agent of all requests made
by this client. Setting this allows Linode’s internal
monitoring applications to track the usage of your
application. Setting this is not necessary, but some
applications may desire this behavior.

	
account = None

	Access methods related to your account - see AccountGroup for
more information

	
create_domain(domain, master=True, **kwargs)

	Registers a new Domain on the acting user’s account. Make sure to point
your registrar to Linode’s nameservers so that Linode’s DNS manager will
correctly serve your domain.

	Parameters

	
	domain (str) – The domain to register to Linode’s DNS manager.

	master (bool) – Whether this is a master (defaults to true)

	Returns

	The new Domain object.

	Return type

	Domain

	
create_image(disk, label=None, description=None)

	Creates a new Image from a disk you own.

	Parameters

	
	disk (Disk or int) – The Disk to imagize.

	label (str) – The label for the resulting Image (defaults to the disk’s
label.

	description (str) – The description for the new Image.

	Returns

	The new Image.

	Return type

	Image

	
create_nodebalancer(region, **kwargs)

	Creates a new NodeBalancer in the given Region.

	Parameters

	region (Region or str) – The Region in which to create the NodeBalancer.

	Returns

	The new NodeBalancer

	Return type

	NodeBalancer

	
create_volume(label, region=None, linode=None, size=20, **kwargs)

	Creates a new Block Storage Volume, either in the given Region or
attached to the given Linode.

	Parameters

	
	label (str) – The label for the new Volume.

	region (Region or str) – The Region to create this Volume in. Not required if
linode is provided.

	linode (Linode or int) – The Linode to attach this Volume to. If not given, the
new Volume will not be attached to anything.

	size (int) – The size, in GB, of the new Volume. Defaults to 20.

	Returns

	The new Volume.

	Return type

	Volume

	
get_account()

	Retrieves information about the acting user’s account, such as billing
information.

	Returns

	Returns the acting user’s account information.

	Return type

	Account

	
get_domains(*filters)

	Retrieves all of the Domains the acting user has access to.

	Parameters

	filters – Any number of filters to apply to this query.

	Returns

	A list of Domains the acting user can access.

	Return type

	PaginatedList of Domain

	
get_images(*filters)

	Retrieves a list of available Images, including public and private
Images available to the acting user. You can filter this query to
retrieve only Images relevant to a specific query, for example:

debian_images = client.get_images(
 Image.vendor == "debain")

	Parameters

	filters – Any number of filters to apply to the query.

	Returns

	A list of available Images.

	Return type

	PaginatedList of Image

	
get_nodebalancers(*filters)

	Retrieves all of the NodeBalancers the acting user has access to.

	Parameters

	filters – Any number of filters to apply to this query.

	Returns

	A list of NodeBalancers the acting user can access.

	Return type

	PaginatedList of NodeBalancers

	
get_profile()

	Retrieve the acting user’s Profile, containing information about the
current user such as their email address, username, and uid.

	Returns

	The acting user’s profile.

	Return type

	Profile

	
get_regions(*filters)

	Returns the available Regions for Linode products.

	Parameters

	filters – Any number of filters to apply to the query.

	Returns

	A list of available Regions.

	Return type

	PaginatedList of Region

	
get_volumes(*filters)

	Retrieves the Block Storage Volumes your user has access to.

	Parameters

	filters – Any number of filters to apply to this query.

	Returns

	A list of Volumes the acting user can access.

	Return type

	PaginatedList of Volume

	
linode = None

	Access methods related to Linodes - see LinodeGroup for
more information

	
load(target_type, target_id, target_parent_id=None)

	Constructs and immediately loads the object, circumventing the
lazy-loading scheme by immediately making an API request. Does not
load related objects.

For example, if you wanted to load a Linode object with ID 123,
you could do this:

loaded_linode = client.load(Linode, 123)

Similarly, if you instead wanted to load a NodeBalancerConfig,
you could do so like this:

loaded_nodebalancer_config = client.load(NodeBalancerConfig, 456, 432)

	Parameters

	
	target_type (type) – The type of object to create.

	target_id (int or str) – The ID of the object to create.

	target_parent_id (int, str, or None) – The parent ID of the object to create, if
applicable.

	Returns

	The resulting object, fully loaded.

	Return type

	target_type

	Raises

	ApiError – if the requested object could not be loaded.

	
longview = None

	Access information related to the Longview service - see
LongviewGroup for more inforamtion

	
networking = None

	Access methods related to networking on your account - see
NetworkingGroup for more information

	
profile = None

	Access methods related to your user - see ProfileGroup for
more information

	
support = None

	Access methods related to support - see SupportGroup for more
information

Groups

These groups are accessed off of the LinodeClient class by name. For
example:

client.linode.get_instances()

See LinodeClient for more information on the naming of these groups,
although generally they are named the same as the first word of the group.

LinodeGroup

Includes methods for managing and creating Linodes, as well as accessing and
working with associated features.

	
class linode.linode_client.LinodeGroup(client)

	Encapsulates Linode-related methods of the LinodeClient. This
should not be instantiated on its own, but should instead be used through
an instance of LinodeClient:

client = LinodeClient(token)
linodes = client.linode.get_instances() # use the LinodeGroup

This group contains all features beneath the /linode group in the API v4.

	
create_instance(ltype, region, image=None, authorized_keys=None, **kwargs)

	Creates a new Linode. This function has several modes of operation:

Create a Linode from an Image

To create a Linode from an Image, call create_instance with
a Type, a Region, and an Image. All three of
these fields may be provided as either the ID or the appropriate object.
In this mode, a root password will be generated and returned with the
new Linode object. For example:

new_linode, password = client.linode.create_instance(
 "g5-standard-1",
 "us-east",
 image="linode/debian9")

ltype = client.linode.get_types().first()
region = client.get_regions().first()
image = client.get_images().first()

another_linode, password = client.linode.create_instance(
 ltype,
 region,
 image=image)

Create a Linode from StackScript

When creating a Linode from a StackScript, an Image that
the StackScript support must be provided.. You must also provide any
required StackScript data for the script’s User Defined Fields.. For
example, if deploying StackScript 10079 [https://www.linode.com/stackscripts/view/10079] (which deploys a new Linode
with a user created from keys on github [https://github.com]:

stackscript = StackScript(client, 10079)

new_linode, password = client.linode.create_instance(
 "g5-standard-2",
 "us-east",
 image="linode/debian9",
 stackscript=stackscript,
 stackscript_data={"gh_username": "example"})

In the above example, “gh_username” is the name of a User Defined Field
in the chosen StackScript. For more information on StackScripts, see
the StackScript guide [https://www.linode.com/docs/platform/stackscripts/].

Create a Linode from a Backup

To create a new Linode by restoring a Backup to it, provide a
Type, a Region, and the Backup to restore. You
may provide either IDs or objects for all of these fields:

existing_linode = Linode(client, 123)
snapshot = existing_linode.available_backups.snapshot.current

new_linode = client.linode.create_instance(
 "g5-standard-1",
 "us-east",
 backup=snapshot)

Create an empty Linode

If you want to create an empty Linode that you will configure manually,
simply call create_instance with a Type and a Region:

empty_linode = client.linode.create_instance("g5-standard-2", "us-east")

When created this way, the Linode will not be booted and cannot boot
successfully until disks and configs are created, or it is otherwise
configured.

	Parameters

	
	ltype (str or LinodeType) – The Linode Type we are creating

	region (str or Region) – The Region in which we are creating the Linode

	image (str or Image) – The Image to deploy to this Linode. If this is provided
and no root_pass is given, a password will be generated
and returned along with the new Linode.

	stackscript (int or StackScript) – The StackScript to deploy to the new Linode. If
provided, “image” is required and must be compatible
with the chosen StackScript.

	stackscript_data (dict) – Values for the User Defined Fields defined in
the chosen StackScript. Does nothing if
StackScript is not provided.

	backup (int of Backup) – The Backup to restore to the new Linode. May not be
provided if “image” is given.

	authorized_keys (list or str) – The ssh public keys to install in the linode’s
/root/.ssh/authorized_keys file. Each entry may
be a single key, or a path to a file containing
the key.

	label (str) – The display label for the new Linode

	group (str) – The display group for the new Linode

	booted (bool) – Whether the new Linode should be booted. This will
default to True if the Linode is deployed from an Image
or Backup.

	Returns

	A new Linode object, or a tuple containing the new Linode and
the generated password.

	Return type

	Linode or tuple(Linode, str)

	Raises

	
	ApiError – If contacting the API fails

	UnexpectedResponseError – If the API resposne is somehow malformed.
This usually indicates that you are using
an outdated library.

	
create_stackscript(label, script, images, desc=None, public=False, **kwargs)

	Creates a new StackScript on your account.

	Parameters

	
	label (str) – The label for this StackScript.

	script (str) – The script to run when a Linode is deployed with
this StackScript. Must begin with a shebang (#!).

	images (list of Image) – A list of Images that this StackScript
supports. Linodes will not be deployed from this
StackScript unless deployed from one of these Images.

	desc (str) – A description for this StackScript.

	public (bool) – Whether this StackScript is public. Defaults to False.
Once a StackScript is made public, it may not be set
back to private.

	Returns

	The new StackScript

	Return type

	StackScript

	
get_instances(*filters)

	Returns a list of Linodes on your account. You may filter this query
to return only Linodes that match specific criteria:

prod_linodes = client.linode.get_instances(Linode.group == "prod")

	Parameters

	filters – Any number of filters to apply to this query.

	Returns

	A list of Linodes that matched the query.

	Return type

	PaginatedList of Linode

	
get_kernels(*filters)

	Returns a list of available Kernels. Kernels are used
when creating or updating LinodeConfigs,LinodeConfig>.

	Parameters

	filters – Any number of filters to apply to this query.

	Returns

	A list of available kernels that match the query.

	Return type

	PaginatedList of Kernel

	
get_stackscripts(*filters, **kwargs)

	Returns a list of StackScripts, both public and
private. You may filter this query to return only
StackScripts that match certain criteria. You may
also request only your own private StackScripts:

my_stackscripts = client.linode.get_stackscripts(mine_only=True)

	Parameters

	
	filters – Any number of filters to apply to this query.

	mine_only (bool) – If True, returns only private StackScripts

	Returns

	A list of StackScripts matching the query.

	Return type

	PaginatedList of StackScript

	
get_types(*filters)

	Returns a list of Linode types. These may be used to create or resize
Linodes, or simply referenced on their own. Types can be filtered to
return specific types, for example:

standard_types = client.linode.get_types(Type.class == "standard")

	Parameters

	filters – Any number of filters to apply to the query.

	Returns

	A list of types that match the query.

	Return type

	PaginatedList of Type

AccountGroup

Includes methods for managing your account.

	
class linode.linode_client.AccountGroup(client)

	
	
create_oauth_client(name, redirect_uri, **kwargs)

	Make a new OAuth Client and return it

	
get_invoices()

	Returns Invoices issued to this account

	
get_oauth_clients(*filters)

	Returns the OAuth Clients associated to this account

	
get_payments()

	Returns a list of Payments made to this account

	
get_settings()

	Resturns the account settings data for this acocunt. This is not a
listing endpoint.

	
get_transfer()

	Returns a MappedObject containing the account’s transfer pool data

	
get_users(*filters)

	Returns a list of users on this account

	
mark_last_seen_event(event)

	Marks event as the last event we have seen. If event is an int, it is treated
as an event_id, otherwise it should be an event object whose id will be used.

ProfileGroup

Includes methods for managing your user.

	
class linode.linode_client.ProfileGroup(client)

	Collections related to your user.

	
create_personal_access_token(label=None, expiry=None, scopes=None, **kwargs)

	Creates and returns a new Personal Access Token

	
get_apps(*filters)

	Returns the Authorized Applications for this user

	
get_tokens(*filters)

	Returns the Person Access Tokens active for this user

NetworkingGroup

Includes methods for managing your networking systems.

	
class linode.linode_client.NetworkingGroup(client)

	
	
allocate_ip(linode)

	Allocates an IP to a Linode you own. Additional IPs must be requested
by opening a support ticket first.

	Parameters

	linode (Linode or int) – The Linode to allocate the new IP for.

	Returns

	The new IPAddress

	Return type

	IPAddress

	
assign_ips(region, *assignments)

	Redistributes IP Addressees within a single region.
This function takes a Region and a list of assignments to make,
then requests that the assignments take place. If any Linode
ends up without a public IP, or with more than one private IP, all of
the assignments will fail.

Example usage:

linode1 = Linode(client, 123)
linode2 = Linode(client, 456)

swap IPs between linodes 1 and 2
client.networking.assign_ips(linode1.region,
 linode1.ips.ipv4.public[0].to(linode2),
 linode2.ips.ipv4.public[0].to(linode1))

	Parameters

	
	region (str or Region) – The Region in which the assignments should take place.
All Linodes and IPAddresses involved in the assignment
must be within this region.

	assignments (dct) – Any number of assignments to make. See
IPAddress.to for details on how to construct
assignments.

LongviewGroup

Includes methods for interacting with our Longview service.

	
class linode.linode_client.LongviewGroup(client)

	
	
create_client(label=None)

	Creates a new LongviewClient, optionally with a given label.

	Parameters

	label – The label for the new client. If None, a default label based
on the new client’s ID will be used.

	Returns

	A new LongviewClient

	Raises

	
	ApiError – If a non-200 status code is returned

	UnexpectedResponseError – If the returned data from the api does
not look as expected.

	
get_clients(*filters)

	Requests and returns a paginated list of LongviewClients on your
account.

	
get_subscriptions(*filters)

	Requests and returns a paginated list of LongviewSubscriptions available

SupportGroup

Includes methods for viewing and opening tickets with our support department.

	
class linode.linode_client.SupportGroup(client)

	
	
open_ticket(summary, description, regarding=None)

	

Linode Login Client

The LinodeLoginClient is the primary interface to the
login.linode.com [https://login.linode.com] OAuth service, and only needs to be used if writing an
OAuth application. For an example OAuth application, see Install on Linode [https://github.com/linode/python-linode-api/tree/master/examples/install-on-linode],
and for a more comprehensive overview of OAuth, read our OAuth
guide.

LinodeLoginClient class

Your interface to Linode’s OAuth authentication server.

	
class linode.LinodeLoginClient(client_id, client_secret, base_url='https://login.linode.com')

	
	
__init__(client_id, client_secret, base_url='https://login.linode.com')

	Create a new LinodeLoginClient. These clients do not make any requests
on creation, and can safely be created and thrown away as needed.

For complete usage information, see the OAuth guide.

	Parameters

	
	client_id (str) – The OAuth Client ID for this client.

	client_secret (str) – The OAuth Client Secret for this client.

	base_url (str) – The URL for Linode’s OAuth server. This should not be
changed.

	
expire_token(token)

	Given a token, makes a request to the authentication server to expire
it immediately. This is considered a responsible way to log out a
user. If you simply remove the session your application has for the
user without expiring their token, the user is not _really_ logged out.

	Parameters

	token (str) – The OAuth token you wish to expire

	Returns

	If the expiration attempt succeeded.

	Return type

	bool

	Raises

	ApiError – If the expiration attempt failed.

	
finish_oauth(code)

	Given an OAuth Exchange Code, completes the OAuth exchange with the
authentication server. This should be called once the user has already
been directed to the login_uri, and has been sent back after successfully
authenticating. For example, in Flask [http://flask.pocoo.org], this might be implemented as
a route like this:

@app.route("/oauth-redirect")
def oauth_redirect():
 exchange_code = request.args.get("code")
 login_client = LinodeLoginClient(client_id, client_secret)

 token, scopes = login_client.finish_oauth(exchange_code)

 # store the user's OAuth token in their session for later use
 # and mark that they are logged in.

 return redirect("/")

	Parameters

	code (str) – The OAuth Exchange Code returned from the authentication
server in the query string.

	Returns

	The new OAuth token, and a list of scopes the token has.

	Return type

	tuple(str, list)

	Raises

	ApiError – If the OAuth exchange fails.

	
generate_login_url(scopes=None, redirect_uri=None)

	Generates a url to send users so that they may authenticate to this
application. This url is suitable for redirecting a user to. For
example, in Flask [http://flask.pocoo.org], a login route might be implemented like this:

@app.route("/login")
def begin_oauth_login():
 login_client = LinodeLoginClient(client_id, client_secret)
 return redirect(login_client.generate_login_url())

	Parameters

	
	scopes (list) – The OAuth scopes to request for this login.

	redirect_uri (str) – The requested redirect uri. The login service
enforces that this is under the registered redirect
path.

	Returns

	The uri to send users to for this login attempt.

	Return type

	str

OAuth Scopes

When requesting authorization to a user’s account, OAuth Scopes allow you to
specify the level of access you are requesting.

	
class linode.login_client.OAuthScopes

	Represents the OAuth Scopes available to an application. In general, an
application should request no more scopes than it requires. This class
should be treated like a Enum, and used as follows:

required_scopes = [OAuthScopes.Linodes.all, OAuthScopes.Domains.read_only]

Lists of OAuth Scopes are accepted when calling the generate_login_url
method of the LinodeLoginClient.

All contained enumerations of OAuth Scopes have two levels, “read_only” and
“read_write”. “read_only” access grants you the ability to get resources and
of that type, but not to change, create, or delete them. “read_write” access
allows to full access to resources of the requested type. In the above
example, you are requesting access to view, modify, create, and delete
Linodes, and to view Domains.

	
class Account

	Access to the user’s account, including billing information, tokens
management, user management, etc.

	
class Clients

	An enumeration.

	
class Domains

	Access to Domains

	
class Events

	Access to a user’s Events

	
class IPs

	Access to IPs and networking managements

	
class Linodes

	Access to Linodes

	
class NodeBalancers

	Access to NodeBalancers

	
class StackScripts

	Access to private StackScripts

	
class Tickets

	Access to view, open, and respond to Support Tickets

	
class Tokens

	An enumeration.

	
class Users

	An enumeration.

	
class Volumes

	Access to Block Storage Volumes

	
all = *

	If necessary, an application may request all scopes by using OAuthScopes.all

Pagination

The Linode API V4 returns collections of resources one page at a time. While
this is useful, this library abstracts away the details of pagination and makes
collections of resources appear as a single, uniform list that can be accessed,
iterated over, and indexed as any normal Python list would be:

regions = client.get_regions() # get a collection of Regions

for region in regions:
 print(region.id)

first_region = regions[0]
last_region = regions[-1]

Pagination is handled transparently, and as requested. For example, if you had
three pages of Linodes, accessing your collection of Linodes would behave like
this:

linodes = client.linode.get_instances() # loads the first page only

linodes[0] # no additional data is loaded

linodes[-1] # third page is loaded to retrieve the last Linode in the collection

for linode in linodes:
 # the second page will be loaded as soon as the first Linode on that page
 # is required. The first and third pages are already loaded, and will not
 # be loaded again.
 print(linode.label)

The first page of a collection is always loaded when the collection is
returned, and subsequent pages are loaded as they are required. When slicing
a paginated list, only the pages required for the slice are loaded.

PaginatedList class

	
class linode.PaginatedList(client, page_endpoint, page=[], max_pages=1, total_items=None, parent_id=None, filters=None)

	The PaginatedList encapsulates the API V4’s pagination in an easily
consumable way. A PaginatedList may be treated like a normal list in all
ways, and can be iterated over, indexed, and sliced.

PaginatedLists should never be constructed manually, and instead should
be created by requesting a collection of resources from the LinodeClient.
For example:

linodes = client.linode.get_instances() # returns a PaginatedList of Linodes

Once you have a PaginatedList of resources, it doesn’t matter how many
resources the API will return - you can iterate over all of them without
having to worry about pagination.:

iterate over all linodes. If there are two or more pages,
they will be loaded as required.
for linode in linodes:
 print(linode.label)

You may access the number of items in a collection by calling len on the
PaginatedList:

num_linodes = len(linodes)

This will _not_ emit another API request.

	
first()

	A convenience method for getting only the first item in this list.
Exactly equivalent to getting index 0.

	Returns

	The first item in this list.

	
last()

	A convenience method for getting only the last item in this list.
Exactly equivalent to getting index -1.

	Returns

	The first item in this list.

	
only()

	Returns the first item in this list, and asserts that it is the only
item. This is useful when querying a collection for a resource and
expecting to get only one back. For instance:

raises if it finds more than one Linode
production_box = client.linode.get_instances(Linode.group == "prod").only()

	Returns

	The first and only item in this list.

	Raises

	ValueError – If more than one item is in this list.

Filtering Collections

Collections returned by the LinodeClient can be filtered using a
SQLAlchemy-like syntax. When calling any “get” method of the LinodeClient
class of one of its groups, any number of filters may be passed in as boolean
comparisons between attributes of the model returned by the collection.

For example, calling get_instances returns a list of Linode
objects, so we can use properties of Linode to filter the results:

returns all Linodes in the "prod" group
client.linode.get_instances(Linode.group == "prod")

You can use any boolean comparisons when filtering collections:

returns all Linodes _not_ in us-east-1a
client.linode.get_instances(Linode.region != "us-east-1a")

You can combine filters to be even more specific - by default all filters are
considered:

returns all Linodes in the "prod" group that are in us-east-1a
client.linode.get_instances(Linode.group == "prod",
 Linode.region == "us-east-1a")

If you need to combine the results of two filters, you can use or_ to define
this relationship:

returns all Linodes in either the "prod" or "staging" groups
client.linode.get_instances(or_(Linode.group == "prod",
 Linode.group == "staging"))

and_ is also available in case you need to do deeply-nested comparisons:

returns all Linodes in the group "staging" and any Linodes in the "prod"
group that are located in "us-east-1a"
client.linode.get_instances(or_(Linode.group == "staging",
 and_(Linode.group == "prod",
 Linode.region == "us-east-1a"))

	
class linode.objects.filtering.Filter(dct)

	A Filter represents a comparison to send to the API. These should not be
constructed normally, but instead should be returned from comparisons
between class attributes of filterable classes (see above). Filters can
be combined with and_ and or_.

	
linode.objects.filtering.and_(a, b)

	Combines two Filters with an “and” operation, matching
any results that match both of the given filters.

	Parameters

	
	a (Filter) – The first filter to consider.

	b (Filter) – The second filter to consider.

	Returns

	A filter that matches both a and b

	Return type

	Filter

	
linode.objects.filtering.limit(amount)

	Allows limiting of results in a collection. You may only ever apply a limit
once per request. For example:

returns my first 5 Linodes
client.linode.get_instances(limit(5))

	Parameters

	amount (int) – The number of results to return.

	Returns

	A filter that will limit the number of results returned.

	Return type

	Filter

	
linode.objects.filtering.or_(a, b)

	Combines two Filters with an “or” operation, matching
any results that match any of the given filters.

	Parameters

	
	a (Filter) – The first filter to consider.

	b (Filter) – The second filter to consider.

	Returns

	

 Python Module Index

 Python Module Index

 l

 		 	

 		
 l	

 	[image: -]
 	
 linode	

 	
 	
 linode.objects.filtering	

 Index

Index

 _
 | A
 | C
 | E
 | F
 | G
 | L
 | M
 | N
 | O
 | P
 | S

_

 	
 	__init__() (linode.LinodeClient method)

 	(linode.LinodeLoginClient method)

A

 	
 	account (linode.LinodeClient attribute)

 	AccountGroup (class in linode.linode_client)

 	all (linode.login_client.OAuthScopes attribute)

 	
 	allocate_ip() (linode.linode_client.NetworkingGroup method)

 	and_() (in module linode.objects.filtering)

 	assign_ips() (linode.linode_client.NetworkingGroup method)

 	authentication server

C

 	
 	client application

 	create_client() (linode.linode_client.LongviewGroup method)

 	create_domain() (linode.LinodeClient method)

 	create_image() (linode.LinodeClient method)

 	create_instance() (linode.linode_client.LinodeGroup method)

 	
 	create_nodebalancer() (linode.LinodeClient method)

 	create_oauth_client() (linode.linode_client.AccountGroup method)

 	create_personal_access_token() (linode.linode_client.ProfileGroup method)

 	create_stackscript() (linode.linode_client.LinodeGroup method)

 	create_volume() (linode.LinodeClient method)

E

 	
 	end user

 	
 	expire_token() (linode.LinodeLoginClient method)

F

 	
 	Filter (class in linode.objects.filtering)

 	
 	finish_oauth() (linode.LinodeLoginClient method)

 	first() (linode.PaginatedList method)

G

 	
 	generate_login_url() (linode.LinodeLoginClient method)

 	get_account() (linode.LinodeClient method)

 	get_apps() (linode.linode_client.ProfileGroup method)

 	get_clients() (linode.linode_client.LongviewGroup method)

 	get_domains() (linode.LinodeClient method)

 	get_images() (linode.LinodeClient method)

 	get_instances() (linode.linode_client.LinodeGroup method)

 	get_invoices() (linode.linode_client.AccountGroup method)

 	get_kernels() (linode.linode_client.LinodeGroup method)

 	get_nodebalancers() (linode.LinodeClient method)

 	get_oauth_clients() (linode.linode_client.AccountGroup method)

 	
 	get_payments() (linode.linode_client.AccountGroup method)

 	get_profile() (linode.LinodeClient method)

 	get_regions() (linode.LinodeClient method)

 	get_settings() (linode.linode_client.AccountGroup method)

 	get_stackscripts() (linode.linode_client.LinodeGroup method)

 	get_subscriptions() (linode.linode_client.LongviewGroup method)

 	get_tokens() (linode.linode_client.ProfileGroup method)

 	get_transfer() (linode.linode_client.AccountGroup method)

 	get_types() (linode.linode_client.LinodeGroup method)

 	get_users() (linode.linode_client.AccountGroup method)

 	get_volumes() (linode.LinodeClient method)

L

 	
 	last() (linode.PaginatedList method)

 	limit() (in module linode.objects.filtering)

 	linode (linode.LinodeClient attribute)

 	(module), [1], [2], [3]

 	linode.objects.filtering (module)

 	
 	LinodeClient (class in linode)

 	LinodeGroup (class in linode.linode_client)

 	LinodeLoginClient (class in linode)

 	load() (linode.LinodeClient method)

 	longview (linode.LinodeClient attribute)

 	LongviewGroup (class in linode.linode_client)

M

 	
 	mark_last_seen_event() (linode.linode_client.AccountGroup method)

N

 	
 	networking (linode.LinodeClient attribute)

 	
 	NetworkingGroup (class in linode.linode_client)

O

 	
 	OAuthScopes (class in linode.login_client)

 	OAuthScopes.Account (class in linode.login_client)

 	OAuthScopes.Clients (class in linode.login_client)

 	OAuthScopes.Domains (class in linode.login_client)

 	OAuthScopes.Events (class in linode.login_client)

 	OAuthScopes.IPs (class in linode.login_client)

 	OAuthScopes.Linodes (class in linode.login_client)

 	OAuthScopes.NodeBalancers (class in linode.login_client)

 	
 	OAuthScopes.StackScripts (class in linode.login_client)

 	OAuthScopes.Tickets (class in linode.login_client)

 	OAuthScopes.Tokens (class in linode.login_client)

 	OAuthScopes.Users (class in linode.login_client)

 	OAuthScopes.Volumes (class in linode.login_client)

 	only() (linode.PaginatedList method)

 	open_ticket() (linode.linode_client.SupportGroup method)

 	or_() (in module linode.objects.filtering)

 	order_by() (in module linode.objects.filtering)

P

 	
 	PaginatedList (class in linode)

 	
 	profile (linode.LinodeClient attribute)

 	ProfileGroup (class in linode.linode_client)

S

 	
 	support (linode.LinodeClient attribute)

 	
 	SupportGroup (class in linode.linode_client)

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 linode-api

 		
 Getting Started

 		
 Installation

 		
 Authentication

 		
 Listing your Linodes

 		
 Creating a Linode

 		
 Core Concepts

 		
 Pagination

 		
 Filtering

 		
 Models

 		
 Creating Models

 		
 Lazy Loading

 		
 Volatile Attributes

 		
 Updating and Deleting Models

 		
 Relationships

 		
 OAuth Integration

 		
 Overview

 		
 OAuth Scopes

 		
 Performing an OAuth Login

 		
 Logging Out

 		
 Linode Client

 		
 Grouping

 		
 LinodeClient class

 		
 Groups

 		
 LinodeGroup

 		
 AccountGroup

 		
 ProfileGroup

 		
 NetworkingGroup

 		
 LongviewGroup

 		
 SupportGroup

 		
 Linode Login Client

 		
 LinodeLoginClient class

 		
 OAuth Scopes

 		
 Pagination

 		
 PaginatedList class

 		
 Filtering