
linode-api Documentation
Release 4.1.8b1

Linode

Mar 30, 2018

Contents:

1 Installation 3

2 Table of Contents 5
2.1 Getting Started . 5
2.2 Core Concepts . 7
2.3 OAuth Integration . 9
2.4 Linode Client . 11
2.5 Linode Login Client . 20
2.6 Pagination . 22
2.7 Filtering Collections . 24

Python Module Index 27

i

ii

linode-api Documentation, Release 4.1.8b1

Note: These docs are currently in development, and are therefore incomplete. For full documentation of the API, see
the Official API Documentation.

This is the documentation for the official Python bindings of the Linode API V4. For API documentation, see devel-
opers.linode.com.

This library can be used to interact with all features of the Linode API, and is compatible with Python 2 and 3.

Contents: 1

https://developers.linode.com
https://developers.linode.com
https://developers.linode.com

linode-api Documentation, Release 4.1.8b1

2 Contents:

CHAPTER 1

Installation

To install through pypi:

pip install linode-api

To install from source:

git clone https://github.com/linode/python-linode-api
cd python-linode-api
python setup.py install

For more information, see our Getting Started guide.

3

linode-api Documentation, Release 4.1.8b1

4 Chapter 1. Installation

CHAPTER 2

Table of Contents

2.1 Getting Started

2.1.1 Installation

The linode-api package can be installed from pypi as shown below:

pip install linode-api

If you prefer, you can clone the package from github and install it from source:

git clone git@github.com:Linode/python-linode-api
cd python-linode-api
python setup.py install

Note: This library uses the “linode” namespace. This could conflict with other libraries intended to interact with
older versions of the Linode API. If you depend on a python library to interact with older versions of the Linode API,
consider using a virtualenv when installing this library.

2.1.2 Authentication

In order to make requests to the Linode API, you will need a token. To generate one, log in to cloud.linode.com, and
on your profile click “Create a Personal Access Token”.

Note: You can also use an OAuth Token to authenticate to the API - see OAuth for details.

When creating a Personal Access Token, you will be prompted for what scopes the token should be created with. These
scopes control what parts of your account this token may be used to access - for more information, see OAuth Scopes.
Restricting what a token can access is more secure than creating one with access to your entire account, but can be

5

https://github.com/Linode/python-linode-api
https://cloud.linode.com
https://cloud.linode.com/profile/tokens

linode-api Documentation, Release 4.1.8b1

less convenient since you would need to create a new token to access other parts of the account. For the examples on
this page, your Personal Access Token must be able to view and create Linodes.

2.1.3 Listing your Linodes

Using the token you generated above, create a LinodeClient object that will be used for all interactions with the
API.:

from linode import LinodeClient
client = LinodeClient(token)

This object will manage all requests you make through the API. Once it’s set up, you can use it to retrieve and print a
list of your Linodes:

my_linodes = client.linode.get_instances()

for current_linode in my_linodes:
print(current_linode.label)

When retrieving collections of objects from the API, a list-like object is returned, and may be iterated over or indexed
as a normal list.

2.1.4 Creating a Linode

In order to create a Linode, we need a few pieces of information:

• what :py:class:Region to create the Linode in

• what :py:class:Type of Linode to create

• what :py:class:Image to deploy to the new Linode.

We can query for these values similarly to how we listed our Linodes above:

available_regions = client.get_regions()

We could also use values that we know in advance to avoid the need to query the API. For example, we may know that
we want a g5-standard-4 Linode running the linode/debian9 Image. Both objects and IDs are accepted when creating
a Linode.:

chosen_region = available_regions[0]

new_linode, password = client.linode.create_instance(chosen_region,
'g5-standard-4',
image='linode/debian9')

create_instance() returns the newly-created Linode object and the root password that was generated for it.
This Linode will boot automatically, and should be available shortly. Finally, let’s print out the results so we can
access our new server.

print("ssh root@{} - {}".format(new_linode.ipv4[0], password))

Continue on to Core Concepts

6 Chapter 2. Table of Contents

core_concepts.html

linode-api Documentation, Release 4.1.8b1

2.2 Core Concepts

The linode-api package, and the API V4, have a few ideas that will help you more quickly become proficient with
their usage. This page assumes you’ve read the Getting Started guide, and know the basics of authentication already.

2.2.1 Pagination

The Linode API V4 loosely follows a RESTful design, and paginates results to responses for GETs to collections.
This library handles pagination transparently, and does not load pages of data until they are required. This is handled
by the PaginatedList class, which behaves similarly to a python list. For example:

linodes = client.linode.get_instances() # returns a PaginatedList of linodes

first_linode = linodes[0] # the first page is loaded automatically, this does
not emit an API call

you can also use the `first()` convenience function for this
first_linode = linodes.first()

last_linode = linodes[-1] # loads only the last page, if it hasn't been loaded yet
this _will_ emit an API call if there were two or
more pages of results. If there was only one page,
this does not emit an additional call

for current_linode in linodes: # iterate over all results, loading pages as necessary
print(current_linode.label)

If you’re not concerned about performance, using a PaginatedList as a normal list should be fine. If your appli-
cation is sensitive to performance concerns, be aware that iterating over a PaginatedList can cause the thread to
wait as a synchronous request for additional data is made mid-iteration.

2.2.2 Filtering

Collections of objects in the API can be filtered to make their results more useful. For example, instead of having to do
this filtering yourself on the full list, you can ask the API for all Linodes you own belonging to a certain group. This
library implements filtering with a SQLAlchemy-like syntax, where a model’s attributes may be used in comparisons
to generate filters. For example:

prod_linodes = client.linode.get_instances(Linode.group == "production")

Filters may be combined using boolean operators similar to SQLAlchemy:

and_ and or_ can be imported from the linode package to combine filters
from linode import or_
prod_or_staging = client.linode.get_instances(or_(Linode.group == "production"

Linode.group == "staging"))

and_ isn't strictly necessary, as it's the default when passing multiple
filters to a collection
prod_and_green = client.linode.get_instances(Linode.group == "production",

Linode.label.contains("green"))

Filters are generally only applicable for the type of model you are querying, but can be combined to your heart’s
content. For numeric fields, the standard numeric comparisons are accepted, and work as you’d expect. See Filtering
Collections for full details.

2.2. Core Concepts 7

getting_started.html

linode-api Documentation, Release 4.1.8b1

2.2.3 Models

This library represents objects the API returns as “models.” Most methods of LinodeClient return models or lists
of models, and all models behave in a similar manner.

Creating Models

In addition to looking up models from collections, you can simply import the model class and create it by ID.:

from linode import Linode
my_linode = Linode(client, 123)

All models take a LinodeClient as their first parameter, and their ID as the second. For derived models (models that
belong to another model), the parent model’s ID is taken as a third argument to the constructor (i.e. to construct a
Disk you pass a LinodeClient, the disk’s ID, then the parent Linode’s ID).

Be aware that when creating a model this way, it is _not_ loaded from the API immediately. Models in this library are
lazy-loaded, and will not be looked up until one of their attributes that is currently unknown is accessed.

Lazy Loading

If a model is created, but not yet retrieved from the API, its attributes will be unpopulated. As soon as an unpopulated
attribute is accessed, an API call is emitted to retrieve that value (and the rest of the attributes in the model) from the
API. For example:

my_linode.id # no API call emitted - this was set on creation
my_linode.label # API call emitted - entire object is loaded from response
my_linode.group # no API call emitted - this was loaded above

Note: When loading a model in this fashion, if the model does not exist in the API or you do not have access to it, an
ApiError is raised. If you want to load a model in a more predictable manner, see LinodeClient.load

Volatile Attributes

Some attributes of models are marked volatile. A volatile attribute will become stale after a short time, and if accessed
when its value is stale, will refresh itself (and the entire object) from the API to ensure the value is current.:

my_linode.boot()
my_linode.status # booting
time.sleep(20) # wait for my_linode.status to become stale
my_linode.status # running

Note: While it is often safe to loop on a volatile attribute, be aware that there is no guarantee that their value will ever
change - be sure that any such loops have another exit condition to prevent your application from hanging if something
you didn’t expect happens.

8 Chapter 2. Table of Contents

linode-api Documentation, Release 4.1.8b1

Updating and Deleting Models

Most models have some number of mutable attributes. Updating a model is as simple as assigning a new value to these
attributes and then saving the model. Many models can also be deleted in a similar fashion.:

my_linode.label = "new-label"
my_linode.group = "new-group"
my_linode.save() # emits an API call to update label and group

my_linode.delete() # emits an API call to delete my_linode

Note: Saving a model may fail if the values you are attempting to save are invalid. If the values you are attemting
to save are coming from an untrusted source, be sure to handle a potential ApiError raised by the API returning an
unsuccessful response code.

Relationships

Many models are related to other models (for example a Linode has disks, configs, volumes, backups, a region, etc).
Related attributes are accessed like any other attribute on the model, and will emit an API call to retrieve the related
models if necessary.:

len(my_linode.disks) # emits an API call to retrieve related disks
my_linode.disks[0] # no API call emitted - this is already loaded

my_linode.region.id # no API call emitted - IDs are already populated
my_linode.region.country # API call emitted - retrieves region object

2.3 OAuth Integration

2.3.1 Overview

OAuth 2 is an open authentication protocol that describes how users can safely grant third-party applications access
to some or all of their accounts with service providers. Linode implements OAuth 2 with https://login.linode.com,
allowing third-party developers worlds of possibilities when integrating with Linode’s service. By making an OAuth
application, you can allow users to grant your app access to create, install, configure, and manage infrastructure on
their behalf.

Note: If you are simply trying out the API, or if you’re writing a command line tool that accepts a Personal Access
Token, you can safely skip this guide.

The OAuth 2 workflow has three actors:

end user The acting user who will log in to the application.

authentication server The server that authorizes logins and issues tokens. In this case, it will be login.linode.com

client application The application you are writing, that Linode users will login to through Linode’s OAuth server.
You must register OAuth clients at https://cloud.linode.com or through create_oauth_client to generate
a client ID and client secret (used in the exchange detailed below).

The OAuth 2 exchange works as follows:

2.3. OAuth Integration 9

https://login.linode.com
https://cloud.linode.com

linode-api Documentation, Release 4.1.8b1

1. The end user visits the client application’s website and attempts to login using OAuth.

2. The client application redirects the end user to the authentication server with the client application’s client ID
and requested OAuth scopes in the query string.

3. The end user inputs their credentials to the authorization server and authorizes the login.

4. The authorization server redirects the end user to the client application with a temporary exchange code in the
query string.

5. The client application issues a request to the authentication server containing the exchange code and the client
application’s client secret.

6. The authentication server responds to the client application with a newly issued OAuth token.

A working example of completing an OAuth exchange using this library is available in the example project Install on
Linode

2.3.2 OAuth Scopes

OAuth scopes define the level of access your client application has to the accounts of users who authorize against it.
While it may be easier to always request the broadest scopes, this is discouraged as it is more dangerous for the end
user. The end user is presented with the requested scopes during the authorization process and may choose to abort
authorization of your application based on the scopes requested.

OAuth scopes are represented by the OAuthScopes class, which can be used to construct lists of scopes to request.
OAuth scopes are divided into “superscopes,” broad categories of entities/actions that may be requested access to, and
“subscopes,” the level of access requested to a particular entity class. For example, if you are writing a frontend to
manage NodeBalancers, you may need access to create and modify NodeBalancers, and also to list Linodes (to display
more information about the individual backends). In this hypothetical case, you would likely want to construct your
requested scopes like this:

requested_scopes = [OAuthScopes.NodeBalancer.all, OAuthScopes.Linodes.view]

2.3.3 Performing an OAuth Login

The LinodeLoginClient class manages all aspects of the OAuth exchange in this library. To create a
LinodeLoginClient, you must use your client ID and client secret (generated upon registering a client appli-
cation with Linode - see above).:

login_client = LinodeLoginClient(my_client_id, my_client_secret)

When a user attempts to login to your application using OAuth, you must issue a redirect to our authentication server
(step 2 above). The LinodeLoginClient handles most of the details of this for you, returning the complete URL
to redirect the end user to:

def begin_oauth_login():
"""
An example function called when a user attempts to login user OAuth.
"""
generate a URL to redirect the user to, requested full access to their
account
redirect_to = login_client.generate_login_url(scopes=OAuthScopes.all)

use your web framework to redirect the user to the generated URL
return redirect(redirect_to)

10 Chapter 2. Table of Contents

https://github.com/linode/python-linode-api/tree/master/examples/install-on-linode
https://github.com/linode/python-linode-api/tree/master/examples/install-on-linode

linode-api Documentation, Release 4.1.8b1

Once the user has authenticated and approved this login, they will be redirected to the URL configured when your
client application was registered. Your web application must accept this request, and should use it to complete the
OAuth exchange (step 5 above):

def oauth_redirect(code=None):
"""
An example callback function when a user authorizes this application.

:param code: The exchange code provided by the authentication server,
present in the query string of the request.

:type code: str
"""
token, scopes = login_client.finish_oauth(code)

token is a valid OAuth token that may be used to construct a
LinodeClient and access the API on behalf of this user.

Now that you have been issued a token, be sure to keep it secret and specific to this user - it should be tied to their
session if possible.

2.3.4 Logging Out

When a user logs out of their account, you must call LoginClient.expire_token with the token issued to your
application. This will invalidate the OAuth token the user generated by logging in, which will completely revoke their
session. Simply invalidating their session in your application and leaving their OAuth token active is not a complete
logout, and should be avoided.

2.4 Linode Client

The LinodeClient is responsible for managing your connection to the API using your token. A LinodeClient is required
for all connections to the API, and a reference to one is required by every model. A LinodeClient is created with a
token, either an OAuth Token from the OAuth Exchange (see oauth for more information) or a Personal Access Token.
See our getting_started guide for more information:

from linode import LinodeClient

token = "api-token" # your token goes here

client = LinodeClient(token)

2.4.1 Grouping

The LinodeClient class is divided into groups following the API’s overall design - some methods and functions are
accessible only through members of the LinodeClient class:

access an ungrouped member
client.get_regions() # /regions

access a grouped member - note the URL matches the grouping
client.linode.get_instances() # /linode/instances

The LinodeClient itself holds top-level collections of the API, while anything that exists under a group in the API
belongs to a member of the client.

2.4. Linode Client 11

linode-api Documentation, Release 4.1.8b1

2.4.2 LinodeClient class

class linode.LinodeClient(token, base_url=’https://api.linode.com/v4’, user_agent=None)

__init__(token, base_url=’https://api.linode.com/v4’, user_agent=None)
The main interface to the Linode API.

Parameters

• token (str) – The authentication token to use for communication with the API. Can be
either a Personal Access Token or an OAuth Token.

• base_url (str) – The base URL for API requests. Generally, you shouldn’t change
this.

• user_agent (str) – What to append to the User Agent of all requests made by this
client. Setting this allows Linode’s internal monitoring applications to track the usage
of your application. Setting this is not necessary, but some applications may desire this
behavior.

account = None
Access methods related to your account - see AccountGroup for more information

create_domain(domain, master=True, **kwargs)
Registers a new Domain on the acting user’s account. Make sure to point your registrar to Linode’s
nameservers so that Linode’s DNS manager will correctly serve your domain.

Parameters

• domain (str) – The domain to register to Linode’s DNS manager.

• master (bool) – Whether this is a master (defaults to true)

Returns The new Domain object.

Return type Domain

create_image(disk, label=None, description=None)
Creates a new Image from a disk you own.

Parameters

• disk (Disk or int) – The Disk to imagize.

• label (str) – The label for the resulting Image (defaults to the disk’s label.

• description (str) – The description for the new Image.

Returns The new Image.

Return type Image

create_nodebalancer(region, **kwargs)
Creates a new NodeBalancer in the given Region.

Parameters region (Region or str) – The Region in which to create the NodeBalancer.

Returns The new NodeBalancer

Return type NodeBalancer

create_volume(label, region=None, linode=None, size=20, **kwargs)
Creates a new Block Storage Volume, either in the given Region or attached to the given Linode.

Parameters

12 Chapter 2. Table of Contents

linode-api Documentation, Release 4.1.8b1

• label (str) – The label for the new Volume.

• region (Region or str) – The Region to create this Volume in. Not required if
linode is provided.

• linode (Linode or int) – The Linode to attach this Volume to. If not given, the
new Volume will not be attached to anything.

• size (int) – The size, in GB, of the new Volume. Defaults to 20.

Returns The new Volume.

Return type Volume

get_account()
Retrieves information about the acting user’s account, such as billing information.

Returns Returns the acting user’s account information.

Return type Account

get_domains(*filters)
Retrieves all of the Domains the acting user has access to.

Parameters filters – Any number of filters to apply to this query.

Returns A list of Domains the acting user can access.

Return type PaginatedList of Domain

get_images(*filters)
Retrieves a list of available Images, including public and private Images available to the acting user. You
can filter this query to retrieve only Images relevant to a specific query, for example:

debian_images = client.get_images(
Image.vendor == "debain")

Parameters filters – Any number of filters to apply to the query.

Returns A list of available Images.

Return type PaginatedList of Image

get_nodebalancers(*filters)
Retrieves all of the NodeBalancers the acting user has access to.

Parameters filters – Any number of filters to apply to this query.

Returns A list of NodeBalancers the acting user can access.

Return type PaginatedList of NodeBalancers

get_profile()
Retrieve the acting user’s Profile, containing information about the current user such as their email address,
username, and uid.

Returns The acting user’s profile.

Return type Profile

get_regions(*filters)
Returns the available Regions for Linode products.

Parameters filters – Any number of filters to apply to the query.

Returns A list of available Regions.

2.4. Linode Client 13

linode-api Documentation, Release 4.1.8b1

Return type PaginatedList of Region

get_volumes(*filters)
Retrieves the Block Storage Volumes your user has access to.

Parameters filters – Any number of filters to apply to this query.

Returns A list of Volumes the acting user can access.

Return type PaginatedList of Volume

linode = None
Access methods related to Linodes - see LinodeGroup for more information

load(target_type, target_id, target_parent_id=None)
Constructs and immediately loads the object, circumventing the lazy-loading scheme by immediately mak-
ing an API request. Does not load related objects.

For example, if you wanted to load a Linode object with ID 123, you could do this:

loaded_linode = client.load(Linode, 123)

Similarly, if you instead wanted to load a NodeBalancerConfig, you could do so like this:

loaded_nodebalancer_config = client.load(NodeBalancerConfig, 456, 432)

Parameters

• target_type (type) – The type of object to create.

• target_id (int or str) – The ID of the object to create.

• target_parent_id (int, str, or None) – The parent ID of the object to cre-
ate, if applicable.

Returns The resulting object, fully loaded.

Return type target_type

Raises ApiError – if the requested object could not be loaded.

longview = None
Access information related to the Longview service - see LongviewGroup for more inforamtion

networking = None
Access methods related to networking on your account - see NetworkingGroup for more information

profile = None
Access methods related to your user - see ProfileGroup for more information

support = None
Access methods related to support - see SupportGroup for more information

2.4.3 Groups

These groups are accessed off of the LinodeClient class by name. For example:

client.linode.get_instances()

See LinodeClient for more information on the naming of these groups, although generally they are named the
same as the first word of the group.

14 Chapter 2. Table of Contents

linode-api Documentation, Release 4.1.8b1

LinodeGroup

Includes methods for managing and creating Linodes, as well as accessing and working with associated features.

class linode.linode_client.LinodeGroup(client)
Encapsulates Linode-related methods of the LinodeClient. This should not be instantiated on its own, but
should instead be used through an instance of LinodeClient:

client = LinodeClient(token)
linodes = client.linode.get_instances() # use the LinodeGroup

This group contains all features beneath the /linode group in the API v4.

create_instance(ltype, region, image=None, authorized_keys=None, **kwargs)
Creates a new Linode. This function has several modes of operation:

Create a Linode from an Image

To create a Linode from an Image, call create_instance with a Type, a Region, and an Image. All
three of these fields may be provided as either the ID or the appropriate object. In this mode, a root
password will be generated and returned with the new Linode object. For example:

new_linode, password = client.linode.create_instance(
"g5-standard-1",
"us-east",
image="linode/debian9")

ltype = client.linode.get_types().first()
region = client.get_regions().first()
image = client.get_images().first()

another_linode, password = client.linode.create_instance(
ltype,
region,
image=image)

Create a Linode from StackScript

When creating a Linode from a StackScript, an Image that the StackScript support must be provided..
You must also provide any required StackScript data for the script’s User Defined Fields.. For example, if
deploying StackScript 10079 (which deploys a new Linode with a user created from keys on github:

stackscript = StackScript(client, 10079)

new_linode, password = client.linode.create_instance(
"g5-standard-2",
"us-east",
image="linode/debian9",
stackscript=stackscript,
stackscript_data={"gh_username": "example"})

In the above example, “gh_username” is the name of a User Defined Field in the chosen StackScript. For
more information on StackScripts, see the StackScript guide.

Create a Linode from a Backup

To create a new Linode by restoring a Backup to it, provide a Type, a Region, and the Backup to
restore. You may provide either IDs or objects for all of these fields:

2.4. Linode Client 15

https://www.linode.com/stackscripts/view/10079
https://github.com
https://www.linode.com/docs/platform/stackscripts/

linode-api Documentation, Release 4.1.8b1

existing_linode = Linode(client, 123)
snapshot = existing_linode.available_backups.snapshot.current

new_linode = client.linode.create_instance(
"g5-standard-1",
"us-east",
backup=snapshot)

Create an empty Linode

If you want to create an empty Linode that you will configure manually, simply call create_instance with
a Type and a Region:

empty_linode = client.linode.create_instance("g5-standard-2", "us-east")

When created this way, the Linode will not be booted and cannot boot successfully until disks and configs
are created, or it is otherwise configured.

Parameters

• ltype (str or LinodeType) – The Linode Type we are creating

• region (str or Region) – The Region in which we are creating the Linode

• image (str or Image) – The Image to deploy to this Linode. If this is provided
and no root_pass is given, a password will be generated and returned along with the new
Linode.

• stackscript (int or StackScript) – The StackScript to deploy to the new Lin-
ode. If provided, “image” is required and must be compatible with the chosen StackScript.

• stackscript_data (dict) – Values for the User Defined Fields defined in the chosen
StackScript. Does nothing if StackScript is not provided.

• backup (int of Backup) – The Backup to restore to the new Linode. May not be
provided if “image” is given.

• authorized_keys (list or str) – The ssh public keys to install in the linode’s
/root/.ssh/authorized_keys file. Each entry may be a single key, or a path to a file contain-
ing the key.

• label (str) – The display label for the new Linode

• group (str) – The display group for the new Linode

• booted (bool) – Whether the new Linode should be booted. This will default to True if
the Linode is deployed from an Image or Backup.

Returns A new Linode object, or a tuple containing the new Linode and the generated password.

Return type Linode or tuple(Linode, str)

Raises

• ApiError – If contacting the API fails

• UnexpectedResponseError – If the API resposne is somehow malformed. This
usually indicates that you are using an outdated library.

create_stackscript(label, script, images, desc=None, public=False, **kwargs)
Creates a new StackScript on your account.

Parameters

16 Chapter 2. Table of Contents

linode-api Documentation, Release 4.1.8b1

• label (str) – The label for this StackScript.

• script (str) – The script to run when a Linode is deployed with this StackScript.
Must begin with a shebang (#!).

• images (list of Image) – A list of Images that this StackScript supports. Linodes
will not be deployed from this StackScript unless deployed from one of these Images.

• desc (str) – A description for this StackScript.

• public (bool) – Whether this StackScript is public. Defaults to False. Once a
StackScript is made public, it may not be set back to private.

Returns The new StackScript

Return type StackScript

get_instances(*filters)
Returns a list of Linodes on your account. You may filter this query to return only Linodes that match
specific criteria:

prod_linodes = client.linode.get_instances(Linode.group == "prod")

Parameters filters – Any number of filters to apply to this query.

Returns A list of Linodes that matched the query.

Return type PaginatedList of Linode

get_kernels(*filters)
Returns a list of available Kernels. Kernels are used when creating or updating LinodeConfigs,
LinodeConfig>.

Parameters filters – Any number of filters to apply to this query.

Returns A list of available kernels that match the query.

Return type PaginatedList of Kernel

get_stackscripts(*filters, **kwargs)
Returns a list of StackScripts, both public and private. You may filter this query to return
only StackScripts that match certain criteria. You may also request only your own private
StackScripts:

my_stackscripts = client.linode.get_stackscripts(mine_only=True)

Parameters

• filters – Any number of filters to apply to this query.

• mine_only (bool) – If True, returns only private StackScripts

Returns A list of StackScripts matching the query.

Return type PaginatedList of StackScript

get_types(*filters)
Returns a list of Linode types. These may be used to create or resize Linodes, or simply referenced on
their own. Types can be filtered to return specific types, for example:

standard_types = client.linode.get_types(Type.class == "standard")

2.4. Linode Client 17

linode-api Documentation, Release 4.1.8b1

Parameters filters – Any number of filters to apply to the query.

Returns A list of types that match the query.

Return type PaginatedList of Type

AccountGroup

Includes methods for managing your account.

class linode.linode_client.AccountGroup(client)

create_oauth_client(name, redirect_uri, **kwargs)
Make a new OAuth Client and return it

get_invoices()
Returns Invoices issued to this account

get_oauth_clients(*filters)
Returns the OAuth Clients associated to this account

get_payments()
Returns a list of Payments made to this account

get_settings()
Resturns the account settings data for this acocunt. This is not a listing endpoint.

get_transfer()
Returns a MappedObject containing the account’s transfer pool data

get_users(*filters)
Returns a list of users on this account

mark_last_seen_event(event)
Marks event as the last event we have seen. If event is an int, it is treated as an event_id, otherwise it
should be an event object whose id will be used.

ProfileGroup

Includes methods for managing your user.

class linode.linode_client.ProfileGroup(client)
Collections related to your user.

create_personal_access_token(label=None, expiry=None, scopes=None, **kwargs)
Creates and returns a new Personal Access Token

get_apps(*filters)
Returns the Authorized Applications for this user

get_tokens(*filters)
Returns the Person Access Tokens active for this user

NetworkingGroup

Includes methods for managing your networking systems.

class linode.linode_client.NetworkingGroup(client)

18 Chapter 2. Table of Contents

linode-api Documentation, Release 4.1.8b1

allocate_ip(linode)
Allocates an IP to a Linode you own. Additional IPs must be requested by opening a support ticket first.

Parameters linode (Linode or int) – The Linode to allocate the new IP for.

Returns The new IPAddress

Return type IPAddress

assign_ips(region, *assignments)
Redistributes IP Addressees within a single region. This function takes a Region and a list of
assignments to make, then requests that the assignments take place. If any Linode ends up without a
public IP, or with more than one private IP, all of the assignments will fail.

Example usage:

linode1 = Linode(client, 123)
linode2 = Linode(client, 456)

swap IPs between linodes 1 and 2
client.networking.assign_ips(linode1.region,

linode1.ips.ipv4.public[0].to(linode2),
linode2.ips.ipv4.public[0].to(linode1))

Parameters

• region (str or Region) – The Region in which the assignments should take place.
All Linodes and IPAddresses involved in the assignment must be within this region.

• assignments (dct) – Any number of assignments to make. See IPAddress.to for
details on how to construct assignments.

LongviewGroup

Includes methods for interacting with our Longview service.

class linode.linode_client.LongviewGroup(client)

create_client(label=None)
Creates a new LongviewClient, optionally with a given label.

Parameters label – The label for the new client. If None, a default label based on the new
client’s ID will be used.

Returns A new LongviewClient

Raises

• ApiError – If a non-200 status code is returned

• UnexpectedResponseError – If the returned data from the api does not look as
expected.

get_clients(*filters)
Requests and returns a paginated list of LongviewClients on your account.

get_subscriptions(*filters)
Requests and returns a paginated list of LongviewSubscriptions available

2.4. Linode Client 19

linode-api Documentation, Release 4.1.8b1

SupportGroup

Includes methods for viewing and opening tickets with our support department.

class linode.linode_client.SupportGroup(client)

open_ticket(summary, description, regarding=None)

2.5 Linode Login Client

The LinodeLoginClient is the primary interface to the login.linode.com OAuth service, and only needs to be
used if writing an OAuth application. For an example OAuth application, see Install on Linode, and for a more
comprehensive overview of OAuth, read our OAuth guide.

2.5.1 LinodeLoginClient class

Your interface to Linode’s OAuth authentication server.

class linode.LinodeLoginClient(client_id, client_secret, base_url=’https://login.linode.com’)

__init__(client_id, client_secret, base_url=’https://login.linode.com’)
Create a new LinodeLoginClient. These clients do not make any requests on creation, and can safely be
created and thrown away as needed.

For complete usage information, see the OAuth guide.

Parameters

• client_id (str) – The OAuth Client ID for this client.

• client_secret (str) – The OAuth Client Secret for this client.

• base_url (str) – The URL for Linode’s OAuth server. This should not be changed.

expire_token(token)
Given a token, makes a request to the authentication server to expire it immediately. This is considered
a responsible way to log out a user. If you simply remove the session your application has for the user
without expiring their token, the user is not _really_ logged out.

Parameters token (str) – The OAuth token you wish to expire

Returns If the expiration attempt succeeded.

Return type bool

Raises ApiError – If the expiration attempt failed.

finish_oauth(code)
Given an OAuth Exchange Code, completes the OAuth exchange with the authentication server. This
should be called once the user has already been directed to the login_uri, and has been sent back after
successfully authenticating. For example, in Flask, this might be implemented as a route like this:

@app.route("/oauth-redirect")
def oauth_redirect():

exchange_code = request.args.get("code")
login_client = LinodeLoginClient(client_id, client_secret)

20 Chapter 2. Table of Contents

https://login.linode.com
https://github.com/linode/python-linode-api/tree/master/examples/install-on-linode
http://flask.pocoo.org

linode-api Documentation, Release 4.1.8b1

token, scopes = login_client.finish_oauth(exchange_code)

store the user's OAuth token in their session for later use
and mark that they are logged in.

return redirect("/")

Parameters code (str) – The OAuth Exchange Code returned from the authentication server
in the query string.

Returns The new OAuth token, and a list of scopes the token has.

Return type tuple(str, list)

Raises ApiError – If the OAuth exchange fails.

generate_login_url(scopes=None, redirect_uri=None)
Generates a url to send users so that they may authenticate to this application. This url is suitable for
redirecting a user to. For example, in Flask, a login route might be implemented like this:

@app.route("/login")
def begin_oauth_login():

login_client = LinodeLoginClient(client_id, client_secret)
return redirect(login_client.generate_login_url())

Parameters

• scopes (list) – The OAuth scopes to request for this login.

• redirect_uri (str) – The requested redirect uri. The login service enforces that this
is under the registered redirect path.

Returns The uri to send users to for this login attempt.

Return type str

2.5.2 OAuth Scopes

When requesting authorization to a user’s account, OAuth Scopes allow you to specify the level of access you are
requesting.

class linode.login_client.OAuthScopes
Represents the OAuth Scopes available to an application. In general, an application should request no more
scopes than it requires. This class should be treated like a Enum, and used as follows:

required_scopes = [OAuthScopes.Linodes.all, OAuthScopes.Domains.read_only]

Lists of OAuth Scopes are accepted when calling the generate_login_url method of the
LinodeLoginClient.

All contained enumerations of OAuth Scopes have two levels, “read_only” and “read_write”. “read_only”
access grants you the ability to get resources and of that type, but not to change, create, or delete them.
“read_write” access allows to full access to resources of the requested type. In the above example, you are
requesting access to view, modify, create, and delete Linodes, and to view Domains.

class Account
Access to the user’s account, including billing information, tokens management, user management, etc.

2.5. Linode Login Client 21

http://flask.pocoo.org

linode-api Documentation, Release 4.1.8b1

class Clients
An enumeration.

class Domains
Access to Domains

class Events
Access to a user’s Events

class IPs
Access to IPs and networking managements

class Linodes
Access to Linodes

class NodeBalancers
Access to NodeBalancers

class StackScripts
Access to private StackScripts

class Tickets
Access to view, open, and respond to Support Tickets

class Tokens
An enumeration.

class Users
An enumeration.

class Volumes
Access to Block Storage Volumes

all = *
If necessary, an application may request all scopes by using OAuthScopes.all

2.6 Pagination

The Linode API V4 returns collections of resources one page at a time. While this is useful, this library abstracts
away the details of pagination and makes collections of resources appear as a single, uniform list that can be accessed,
iterated over, and indexed as any normal Python list would be:

regions = client.get_regions() # get a collection of Regions

for region in regions:
print(region.id)

first_region = regions[0]
last_region = regions[-1]

Pagination is handled transparently, and as requested. For example, if you had three pages of Linodes, accessing your
collection of Linodes would behave like this:

linodes = client.linode.get_instances() # loads the first page only

linodes[0] # no additional data is loaded

linodes[-1] # third page is loaded to retrieve the last Linode in the collection

22 Chapter 2. Table of Contents

linode-api Documentation, Release 4.1.8b1

for linode in linodes:
the second page will be loaded as soon as the first Linode on that page
is required. The first and third pages are already loaded, and will not
be loaded again.
print(linode.label)

The first page of a collection is always loaded when the collection is returned, and subsequent pages are loaded as they
are required. When slicing a paginated list, only the pages required for the slice are loaded.

2.6.1 PaginatedList class

class linode.PaginatedList(client, page_endpoint, page=[], max_pages=1, total_items=None,
parent_id=None, filters=None)

The PaginatedList encapsulates the API V4’s pagination in an easily consumable way. A PaginatedList may be
treated like a normal list in all ways, and can be iterated over, indexed, and sliced.

PaginatedLists should never be constructed manually, and instead should be created by requesting a collection
of resources from the LinodeClient. For example:

linodes = client.linode.get_instances() # returns a PaginatedList of Linodes

Once you have a PaginatedList of resources, it doesn’t matter how many resources the API will return - you can
iterate over all of them without having to worry about pagination.:

iterate over all linodes. If there are two or more pages,
they will be loaded as required.
for linode in linodes:

print(linode.label)

You may access the number of items in a collection by calling len on the PaginatedList:

num_linodes = len(linodes)

This will _not_ emit another API request.

first()
A convenience method for getting only the first item in this list. Exactly equivalent to getting index 0.

Returns The first item in this list.

last()
A convenience method for getting only the last item in this list. Exactly equivalent to getting index -1.

Returns The first item in this list.

only()
Returns the first item in this list, and asserts that it is the only item. This is useful when querying a
collection for a resource and expecting to get only one back. For instance:

raises if it finds more than one Linode
production_box = client.linode.get_instances(Linode.group == "prod").only()

Returns The first and only item in this list.

Raises ValueError – If more than one item is in this list.

2.6. Pagination 23

linode-api Documentation, Release 4.1.8b1

2.7 Filtering Collections

Collections returned by the LinodeClient can be filtered using a SQLAlchemy-like syntax. When calling any
“get” method of the LinodeClient class of one of its groups, any number of filters may be passed in as boolean
comparisons between attributes of the model returned by the collection.

For example, calling get_instances returns a list of Linode objects, so we can use properties of Linode to
filter the results:

returns all Linodes in the "prod" group
client.linode.get_instances(Linode.group == "prod")

You can use any boolean comparisons when filtering collections:

returns all Linodes _not_ in us-east-1a
client.linode.get_instances(Linode.region != "us-east-1a")

You can combine filters to be even more specific - by default all filters are considered:

returns all Linodes in the "prod" group that are in us-east-1a
client.linode.get_instances(Linode.group == "prod",

Linode.region == "us-east-1a")

If you need to combine the results of two filters, you can use or_ to define this relationship:

returns all Linodes in either the "prod" or "staging" groups
client.linode.get_instances(or_(Linode.group == "prod",

Linode.group == "staging"))

and_ is also available in case you need to do deeply-nested comparisons:

returns all Linodes in the group "staging" and any Linodes in the "prod"
group that are located in "us-east-1a"
client.linode.get_instances(or_(Linode.group == "staging",

and_(Linode.group == "prod",
Linode.region == "us-east-1a"))

class linode.objects.filtering.Filter(dct)
A Filter represents a comparison to send to the API. These should not be constructed normally, but instead
should be returned from comparisons between class attributes of filterable classes (see above). Filters can be
combined with and_ and or_.

linode.objects.filtering.and_(a, b)
Combines two Filters with an “and” operation, matching any results that match both of the given filters.

Parameters

• a (Filter) – The first filter to consider.

• b (Filter) – The second filter to consider.

Returns A filter that matches both a and b

Return type Filter

linode.objects.filtering.limit(amount)
Allows limiting of results in a collection. You may only ever apply a limit once per request. For example:

returns my first 5 Linodes
client.linode.get_instances(limit(5))

24 Chapter 2. Table of Contents

linode-api Documentation, Release 4.1.8b1

Parameters amount (int) – The number of results to return.

Returns A filter that will limit the number of results returned.

Return type Filter

linode.objects.filtering.or_(a, b)
Combines two Filters with an “or” operation, matching any results that match any of the given filters.

Parameters

• a (Filter) – The first filter to consider.

• b (Filter) – The second filter to consider.

Returns A filter that matches either a or b

Return type Filter

linode.objects.filtering.order_by(field, desc=False)
Allows ordering of results. You may only ever order a collection’s results once in a given request. For example:

sort results by Linode group
client.linode.get_instances(order_by(Linode.group))

Parameters

• field (FilterableAttribute) – The field to order results by. Must be a filterable
attribute of the model.

• desc (bool) – If True, return results in descending order. Defaults to False

Returns A filter that will order results as requested.

Return type Filter

2.7. Filtering Collections 25

linode-api Documentation, Release 4.1.8b1

26 Chapter 2. Table of Contents

Python Module Index

l
linode, 24
linode.objects.filtering, 24

27

linode-api Documentation, Release 4.1.8b1

28 Python Module Index

Index

Symbols
__init__() (linode.LinodeClient method), 12
__init__() (linode.LinodeLoginClient method), 20

A
account (linode.LinodeClient attribute), 12
AccountGroup (class in linode.linode_client), 18
all (linode.login_client.OAuthScopes attribute), 22
allocate_ip() (linode.linode_client.NetworkingGroup

method), 18
and_() (in module linode.objects.filtering), 24
assign_ips() (linode.linode_client.NetworkingGroup

method), 19
authentication server, 9

C
client application, 9
create_client() (linode.linode_client.LongviewGroup

method), 19
create_domain() (linode.LinodeClient method), 12
create_image() (linode.LinodeClient method), 12
create_instance() (linode.linode_client.LinodeGroup

method), 15
create_nodebalancer() (linode.LinodeClient method), 12
create_oauth_client() (lin-

ode.linode_client.AccountGroup method),
18

create_personal_access_token() (lin-
ode.linode_client.ProfileGroup method),
18

create_stackscript() (linode.linode_client.LinodeGroup
method), 16

create_volume() (linode.LinodeClient method), 12

E
end user, 9
expire_token() (linode.LinodeLoginClient method), 20

F
Filter (class in linode.objects.filtering), 24

finish_oauth() (linode.LinodeLoginClient method), 20
first() (linode.PaginatedList method), 23

G
generate_login_url() (linode.LinodeLoginClient method),

21
get_account() (linode.LinodeClient method), 13
get_apps() (linode.linode_client.ProfileGroup method),

18
get_clients() (linode.linode_client.LongviewGroup

method), 19
get_domains() (linode.LinodeClient method), 13
get_images() (linode.LinodeClient method), 13
get_instances() (linode.linode_client.LinodeGroup

method), 17
get_invoices() (linode.linode_client.AccountGroup

method), 18
get_kernels() (linode.linode_client.LinodeGroup

method), 17
get_nodebalancers() (linode.LinodeClient method), 13
get_oauth_clients() (linode.linode_client.AccountGroup

method), 18
get_payments() (linode.linode_client.AccountGroup

method), 18
get_profile() (linode.LinodeClient method), 13
get_regions() (linode.LinodeClient method), 13
get_settings() (linode.linode_client.AccountGroup

method), 18
get_stackscripts() (linode.linode_client.LinodeGroup

method), 17
get_subscriptions() (lin-

ode.linode_client.LongviewGroup method),
19

get_tokens() (linode.linode_client.ProfileGroup method),
18

get_transfer() (linode.linode_client.AccountGroup
method), 18

get_types() (linode.linode_client.LinodeGroup method),
17

29

linode-api Documentation, Release 4.1.8b1

get_users() (linode.linode_client.AccountGroup method),
18

get_volumes() (linode.LinodeClient method), 14

L
last() (linode.PaginatedList method), 23
limit() (in module linode.objects.filtering), 24
linode (linode.LinodeClient attribute), 14
linode (module), 7, 11, 20, 24
linode.objects.filtering (module), 24
LinodeClient (class in linode), 12
LinodeGroup (class in linode.linode_client), 15
LinodeLoginClient (class in linode), 20
load() (linode.LinodeClient method), 14
longview (linode.LinodeClient attribute), 14
LongviewGroup (class in linode.linode_client), 19

M
mark_last_seen_event() (lin-

ode.linode_client.AccountGroup method),
18

N
networking (linode.LinodeClient attribute), 14
NetworkingGroup (class in linode.linode_client), 18

O
OAuthScopes (class in linode.login_client), 21
OAuthScopes.Account (class in linode.login_client), 21
OAuthScopes.Clients (class in linode.login_client), 21
OAuthScopes.Domains (class in linode.login_client), 22
OAuthScopes.Events (class in linode.login_client), 22
OAuthScopes.IPs (class in linode.login_client), 22
OAuthScopes.Linodes (class in linode.login_client), 22
OAuthScopes.NodeBalancers (class in lin-

ode.login_client), 22
OAuthScopes.StackScripts (class in linode.login_client),

22
OAuthScopes.Tickets (class in linode.login_client), 22
OAuthScopes.Tokens (class in linode.login_client), 22
OAuthScopes.Users (class in linode.login_client), 22
OAuthScopes.Volumes (class in linode.login_client), 22
only() (linode.PaginatedList method), 23
open_ticket() (linode.linode_client.SupportGroup

method), 20
or_() (in module linode.objects.filtering), 25
order_by() (in module linode.objects.filtering), 25

P
PaginatedList (class in linode), 23
profile (linode.LinodeClient attribute), 14
ProfileGroup (class in linode.linode_client), 18

S
support (linode.LinodeClient attribute), 14
SupportGroup (class in linode.linode_client), 20

30 Index

	Installation
	Table of Contents
	Getting Started
	Core Concepts
	OAuth Integration
	Linode Client
	Linode Login Client
	Pagination
	Filtering Collections

	Python Module Index

